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1 Introduction 

Are option returns predictable? In spite of the enormous expansion of equity option 

markets since the first day of negotiations on the Chicago Board Option Exchange on 

April 26, 1973, there has been a limited number of efforts in the financial economics 

literature aimed at understanding the predictability features of option returns. 

Recently, Goyal and Saretto (2009) presented empirical evidence that the volatility 

risk premium (which can be measured as the difference between implied and realized 

volatilities) can predict option returns. Goyal and Saretto (2009) argue that large 

deviations of implied volatility (henceforth,   ) from realized volatility (henceforth, 

  ) are indicative of option mispricing, which could be used to predict returns on 

option contracts. We provide a different (although complementary) explanation for 

such empirical evidence. Through the use of a rather standard, but yet powerful, 

dynamic equilibrium model in which agents follow a rational learning process, we 

show that cognitive mechanisms explain the predictive relationship between the 

volatility risk premium and returns on option portfolios. Our option learning model is 

based on generally accepted assumptions concerning preferences and the stochastic 

process of the fundamentals which drive asset prices. Our findings complement the 

explanation given by Goyal and Saretto (2009), since we explain through rational 

learning ‘why’    can deviate from   , but we also show that learning generates 

predictive dynamics. Moreover, our learning model is able to explain other empirical 

phenomena that have been observed in option market data, including the relationship 

between option returns and implied skewness (e.g., Bali and Murray, 2013), the 

association of option returns with the slope of the implied volatility term structure 

(e.g., Vasquez, 2012), and the relationship between predictive dynamics in implied 

volatilities and returns of option portfolios (e.g., Gonçalves and Guidolin, 2006; 

Bernales and Guidolin, 2013).  

Our model extends the simple discrete-time endowment economy proposed by Lucas 

(1978), in which a representative agent has to price a risk-free one-period bond, a 

stock, and a set of option contracts (European put and call option contracts). We 

modify Lucas’ (1978) model by making the fundamental mean dividend growth rate, 

  , subject to breaks, where time periods between breaks follow a memoryless 
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stochastic process.1,2 Thus, when a break takes place at time    , the new mean 

dividend growth rate is drawn from a continuous univariate density           and 

its value keeps constant until the next break. Moreover, we relax the Lucas’ (1978) full 

information assumption by assuming that the mean dividend growth rate is unknown 

by the representative agent. Nevertheless, the agent can learn recursively about the 

new value of      as new information arrives by following a Bayesian updating 

procedure.  

In the model, the representative agent learns from the  daily dividends received after 

each break; hence, dividends are the signals used to obtain an 'estimated' mean 

dividend growth rate,      , in order to price all assets. In early periods after a break, 

when no ‘long’ history of dividend realisations is available, there are dramatic 

revisions in the estimated      , since there is an important estimation uncertainty 

resulting from the lack of information. Thus, the initial uncertainty generated by the 

agent's learning process produce a change in the perception of the risk-neutral 

probability distribution which is seen as wider, and extreme events are perceived as 

more likely (see, e.g., Guidolin and Timmermann, 2003 and 2007). This induces a 

divergence between the risk-neutralized and physical volatility measures (i.e., 

typically measured through the implied and realized volatilities, respectively).3 

Therefore, learning could give an explanation to the volatility risk premium, which in 

our model is associated with the uncertainty generated by the agent's learning ability 

when there are changes in the fundamentals.4,5  

 

                                                 
1 There is an extended empirical literature showing evidence of breaks in economic fundamentals, such 
as in the parameters of the dividend process and in the real GDP growth (e.g., Bai et al., 1998; 
Timmermann, 2001; Granger and Hyung, 2004).  
2 Several circumstances can generate breaks in the economy, such as permanent technological 
innovations, shifts in tax codes, shifts in monetary policy, shifts in stock market participation, among 
other possibilities. However, as for any ‘change’, breaks in economic fundamentals induce a learning 
process that investors must follow to recognize the new market conditions.  
3 Thus, learning may provide an explanation for the puzzling empirical regularity that implied 
volatilities are typically greater than realized volatilities (see, e.g., Christensen and Prabhala, 1998). 
4 The volatility risk premium has been previously associated with economic uncertainties and business 
cycles (see Corradi et al., 2013; Todorov, 2010; Miao et al., 2012; Bollerslev et al., 2011).  
5 Several recent studies have proposed explanations for the existence of the volatility risk premium 
within the context of equilibrium-based pricing models. However, these studies have not explored why 
the volatility risk premium can predict option returns, which is the main objective of our study. See, e.g., 
Bakshi and Kapadia (2003a, 2003b), Bakshi and Madan (2006), Bollerslev et al. (2009), Carr and Wu 
(2009), Drechsler and Yaron (2011), Eraker (2009), and Todorov (2010). 
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The changes in the shape of risk-neutral probability distribution are directly observed 

in option prices and option returns, due to the non-linear features of the payoff 

structure of option contracts. Moreover, we show that learning has a heterogeneous 

impact on different option contracts (and hence an asymmetric effect on their implied 

volatilities), since their non-linear properties and leverage levels depend on their 

strike prices and time-to-maturities. Therefore, and similar to Guidolin and 

Timmermann (2003), we report that learning generates an implied volatility surface 

(henceforth,    ).6  

Nevertheless, learning is a dynamic and a recursive process. As more information 

becomes available, the estimated fundamental mean dividend growth (     ) rate 

slowly converges to its true value (    ); and hence the initial large values of the 

volatility risk premium and the impact of learning on option returns are progressively 

reduced. Thus, learning produces changes over time in the agent’s beliefs and 

dynamically affects the risk-neutral probability distribution, which becomes path 

dependant. Consequently, learning generates dynamic impacts on asset valuations 

and affects other 'implied' variables obtained from option contracts. However, 

learning never disappears completely (even asymptotically) because its strength is 

destined to re-appear once again after a new break hits the mean dividend growth 

rate.  

We find that the recursive learning process not only affect option prices and option 

returns, but learning also induces a dynamic relationship between option returns and 

the volatility risk premium (henceforth,     or (  -  )). We show through our 

model that the volatility risk premium consistently predicts a nontrivial fraction of 

returns of various option trading strategies (i.e., hold-to-maturity option returns, 

delta-hedged option portfolio returns and straddle portfolio returns). Thus, learning 

may provide an explanation for the empirical evidence documented in Goyal and 

Sarreto (2009) and Cao and Han (2013), who show that the volatility risk premium 

                                                 
6 Empirical research has identified that implied volatilities tend to differ across strike prices and time-
to-maturities, which is known as the implied volatility surface (see, e.g., Rubinstein,1985; Dumas et al., 
1998; Das and Sundaram, 1999). 
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has a predictive power in relation to economic profits obtained in portfolios with 

option contracts.7,8  

Furthermore, we present evidence that the agent's learning process explains why the 

slopes of the     (on the moneyness dimension and on the maturity dimension) also 

predict option returns, which has been documented by previous empirical studies. For 

instance, Bali and Murray (2013) show that implied skewness, which is proxied by the 

implied volatility slope along the moneyness dimension, can forecast returns on 

option portfolios, while Vasquez (2012) reports that the implied volatility slope on the 

maturity dimension has a predictive power on option returns.9 In addition, we show 

that learning also offers an explanation for the forecasting ability of implied 

volatilities over delta-hedged and straddle returns, that has been reported in index 

options (see Gonçalves and Guidolin, 2006) and equity options (see Bernales and 

Guidolin, 2013). Our results are robust across diverse trading strategies and after 

adding alternative predictor variables. 

Our study is connected to equilibrium models in which learning is used in option 

pricing. Although these studies use learning mainly to explain the ‘existence’ of the 

implied volatility surface; hence they do not explore the predictability patterns and 

features of 'option returns' as our study does. For instance, David and Veronesi (2002) 

present a model in which the dividend drift follows a two-state regime-switching 

process, where investors have uncertainty about the current state of the economy. 

Guidolin and Timmermann (2003) introduce an equilibrium model where dividend 

growth evolves on a binomial lattice with an unknown but recursively updated state 

probability. Shaliastovich (2009) presents a long-run risk type model where the 

                                                 
7 It is important to note that Goyal and Sarreto (2009) and Cao and Han (2013) use a negative version 
of our volatility risk premium, however our results are consistent with the evidence reported in both 
studies. Goyal and Saretto (2009) find that portfolios with a large positive difference between    and 
   produce an economically and statistically significant monthly option return. Cao and Han (2013) 
also show that the difference between    and    has a significant positive relationship with returns on 
call- and put-delta-hedged portfolios. 
8 Despite the fact that our model has only one stock and a set of option contracts, while Goyal and 
Sarreto (2009) and Cao and Han (2013) analyse option returns using diverse equity options, the main 
objective of our study is to show (using a simple extension of the Lucas' (1978) model) that learning 
may explain the puzzling relationship between the volatility risk premium and the returns of option 
portfolios. 
9 Toft and Prucyk (1997) use the implied volatility slope on the moneyness dimension of the     as a 
proxy for risk-neutral skewness.  
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expected consumption growth and its uncertainty are time-varying, and uncertainty is 

subject to jumps. In Shaliastovich’s (2009) model, the unobservable consumption 

growth rate has to be learned by a recency-biased updating procedure. 10,11 However, 

we are unaware of any theoretical study to date that explains, through a dynamic 

equilibrium model, the predictive power on 'option returns' of: the volatility risk 

premium; the moneyness and maturity slopes of the    ; and the ‘simple’ implied 

volatility. 

We contribute to the body of knowledge on understanding why the volatility risk 

premium and other option-implied variables can forecast option returns. As 

previously stated, the use of a simple (but powerful) dynamic equilibrium model 

under rational learning to explain the predictability characteristics of option returns 

appears distinctive. The study is organized as follows. Section 2 introduces the model. 

Section 3 describes the simulations and Section 4 presents the main results. Finally, 

section 5 concludes. 

 

2 The model  

As mentioned in the introduction, there is empirical evidence that the difference 

between the implied and realized volatilities is able to explain and predict future 

option returns, which contradicts the assumptions of the Black and Scholes’ (1973) 

model where the volatility risk premium should not exist. This suggests that a more 

general option pricing model is required. In this section, we propose an equilibrium 

model with learning to examine new and more complex linkages of option returns, 

volatility risk premium and other option-implied variables.  

Our starting point builds on the simple representative agent discrete-time endowment 

economy introduced by Lucas (1978). However, the setup proposed in Lucas (1978) is 

extended by making the fundamental mean dividend growth rate,   , subject to 

                                                 
10 In addition, there are associated studies in which the predictive power of the volatility risk premium 
is used to forecast returns of the underlying asset instead of options returns (e.g., Bollerslev, 2009; and 
Drechsler and Yaron, 2011). 
11 Our paper is also related to studies that examine and explain why the volatility risk premium 
increases with uncertainty, where this uncertainty is generated through learning (e.g., David and 
Veronesi, 2014) or through investors' disagreement (e.g., Buraschi et al., 2014). 
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breaks. In this section, as a first step, we assume full information to characterize asset 

prices (i.e., the agent knows the value of    over time). Afterwards, we relax the full 

information assumption to incorporate learning. Thus, we will assume that    is 

unknown. Nevertheless, as new information arrives, a representative Bayesian agent 

recursively learns about the level of the fundamental mean dividend growth rate 

To begin, suppose there are four asset types: a one-period zero-coupon default free 

bond,   , in zero net supply; a stock with net supply normalized at one,   ; a set of put 

option contracts,          , and a set of call option contracts,           , which are 

European-style with underlying asset   , strike price  , and time-to-maturity    We 

consider a perfect capital market with the objective of pricing assets. There are no 

taxes, no transaction costs, unlimited short sales possibilities, perfect liquidity, and no 

borrowing and lending constraints. The representative agent has a power utility at 

time  :  

        
  
     

   
           

                         

        (1) 

where    is the real consumption and   is the coefficient of relative risk aversion.  

The stock pays out infinite real dividends,  , which evolve following a geometric 

random walk,                        , with volatility   and drift      in which the 

innovation term,     , is homoscedastic and serially uncorrelated. However, the 

fundamental mean dividend growth rate      (and hence      given that      

                ) presents breaks and thus changes over time, although the value 

of      is constant between breaks. Time periods between breaks follow a geometric 

process with a parameter  ; hence the number of breaks in a given period is 

characterized by a Binomial distribution. We assume that   and   are constant to 

obtain the simplest setting which allows us to isolate the sources of learning to only 

one parameter (in our case, learning only involves the fundamental mean dividend 

growth rate). This is in line with Timmermann (1996, 2001), who shows that: i) this 

specification provides an adequate fit to the data on real dividends in the U.S. market; 

and ii) investors’ learning regarding only the mean dividend growth rate induces 

excess volatility and volatility clustering in stock returns, even though the volatility of 
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the dividend random walk process,  , and the probability of breaks,  , are assumed to 

be invariable.12  

Let us assume that when a break happens at time    , the new value of      is 

drawn from a continuous univariate density           defined on the support 

       . We assume that dividends are non-storable and represent the unique source 

of income; thus they are consumed when they are received (i.e.,      ). Therefore, 

subject to budget constraints, the representative agent chooses assets’ holdings by 

maximizing her discount value of expected future utilities, 

             
      

                
 
    , in which   =        ,   is the impatience 

rate, and     
  (    

 ) is the quantity of stocks (bonds) in her portfolio. As in Guidolin 

and Timmermann (2003), we assume that markets are complete and hence options 

are not considered in the agent’s holding maximization problem since option 

contracts are redundant assets. Consequently, this yields the following Euler 

equations for the stock and the bond:                 
               and 

                
   , in which the pricing kernel,                

  , is defined 

as the intertemporal marginal rate of substitution multiplied by the discount factor. 

Proposition I presents expressions for equilibrium stock and bond prices, which are 

obtained by solving the Euler equations in the presence of breaks and full information. 

Proposition I (Full Information): The full information rational expected stock price,   
  , 

and the one-period zero-coupon expected bond price,   
  , are given by:  

    
   

  

               
                

      
           

     
           (2) 

and 

     
   

 

     
            

             
          

  
  

   (3) 

where             
           

  

  
;     

        
    

                    
         

  

  
    

 
        

   

                    
        

  

  
; and           

   . 

Proof: See Timmermann (2001). 

                                                 
12 Appendix B shows that the geometric random walk with breaks in the drift is capable to characterize 
the dynamics of dividends using market data. 
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Proposition I shows that under full information, the ex-dividend stock price is first 

order homogeneous in dividends and is affected by shifts in   ; thus, the price-

dividend ratio is time-varying and also conditioned by   . Similarly, the bond price is 

also dynamic and evolves over time depending on the breaks in   . Moreover, 

assuming no arbitrage opportunities, option contracts can be priced by a change of 

measure in relation to the state-price density, which are presented in Proposition II.  

Proposition II (Full Information): The full information rational expected prices of the 

European put option,     
       , and the European call option,      

       , with strike 

price   and maturity   are given by: 

      
                   

             
        

   

 
 (4) 

and 

       
                 

               
        

   

 
 (5) 

where     
               ,                                    

   
   , z is the 

number of breaks between   and     that is a random variable drawn from a Binomial 

distribution          with parameters   and  , and        
  are the time periods between 

breaks and also random variables drawn from geometric distributions         in which 

     
 
   . In addition,           

  are drawn from a univariate density            with 

pdf      defined on the support         where          and           ,      is the 

innovation term of the dividends’ geometric random walk characterised by a normal 

density             with mean zero and volatility  , and finally:         
    

           
                                                                

Proof: See Appendix A. 

Proposition I and Proposition II are obtained assuming full information (i.e., at any 

time   the representative agent knows the true fundamental value of the mean 

dividend growth rate   ). However, we will relax this assumption to observe the effect 

of learning on option prices and their returns. Suppose that    is unknown (and 

therefore    is also unknown given that                  ); however, the 

representative agent observes the dividends received from the underlying asset on a 

daily basis. Thus, the agent receives independent signals about the mean dividend 
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growth rate which are random and follow a lognormal distribution,                 
 , 

where   is the number of periods since the last break. We assume that the 

representative agent uses the information available efficiently to price all assets 

following a Bayesian updating procedure. Similar to Timmermann (2001), we assume 

that the agent knows when a break happens, which allow us to study the clean effect 

of breaks and learning on option pricing. The assumption of knowing the breakpoint 

dates does not appear to be completely unrealistic, given the number of recent 

econometric advances that have shown that it is possible to perform real-time tests to 

monitor breaks in the mean function, and attaining a considerable degree of accuracy 

(see, e.g., Chu et al., 1996; Leisch et al., 2000).13  

Consequently, given the agent’s prior beliefs       when there is incomplete 

information, the expected value under Bayesian learning at time  ,     
     , of any asset 

or variable that depends of   ,       , is:  

     
              

                        
  
  

                  
  
  

 (6) 

with 

            
 

       
    

         
 

     
  (7) 

in which                                  ,             
 
       , and      is the 

pdf of   . 

Corollary I (Bayesian Learning): The stock price, the bond price, the prices of European 

put option contracts and the prices of European call option contracts under incomplete 

information and learning, are given by: 

   
   

   
                   

  
  

                  
  
  

      (8) 

                                                 
13 Moreover, as argued by Lettau and Van Nieuwerburgh (2008), the uncertainty generated by the 
detection of breakpoint dates in the process of economic fundamentals is not critical to explain asset 
returns anomalies. Lettau and Van Nieuwerburgh (2008) show that the main source of uncertainty is 
caused by the estimation of the magnitude of the new parameters in the aftermath of the break dates, 
similarly to our modelling approach. 
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      (9) 

     
        

             
             

        
   

 
                             

  

  

                             
  

  

, (10) 

 

     
        

           
               

        
   

 
                             

  

  

                             
  

  

, 

(11) 

Here,     
               with                      , and      is the number of 

signals at the maturity from the last break (it is important to observe that          

because there are chances of breaks between   and    ; and hence      is also a 

random variable where         ). 

Therefore, immediately after breaks, the agent does not have enough historical 

information to obtain reliable values for the different asset prices. She experiences an 

initial period of intense learning that generates important changes in her beliefs about 

the fundamental mean dividend growth rate, which induce important effects on the 

valuation process of all assets, and has a particularly dynamic impact on option prices 

and their implied volatilities. However, these large adjustments in beliefs are reduced 

recursively over time, as more information is received and learned. In fact, as we will 

show in the following sections, the learning process by which the agent’s beliefs are 

updated (i.e. according to a recursive information acquisition) produces predictive 

dynamics on option returns, volatility risk premium and other option-implied 

variables.14  

 

3 Simulations  

The main aim of our study is to understand the effects of learning on the relationship 

and predictability patterns of option returns, volatility risk premium and other 

                                                 
14 It is important to notice that when the probability of a break is very large (i.e.,    , which means 
that the agent faces breaks every day) learning is not observable at all, since everything changes 
constantly and ‘there is no time to learn’. Whereas learning will vanish after a while in the case of an 
economy with no breaks (i.e.,    ), even under incomplete information. When there are no breaks, 
the agent should have sufficient information after a long period to calculate accurate values for the 
mean dividend growth rate and asset prices; and thus learning will disappear asymptotically.  
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option-implied variables. Using the same arguments as in Timmermann (1993, 1996, 

2001), Veronesi (1999, 2000) and Guidolin (2006), who all examine the effects of 

learning on stock returns by performing extensive sets of simulations, we use a 

simulation approach to analyse the learning effects on predictability patterns of 

option returns. Timmermann (1993, 1996, 2001), Veronesi (1999, 2000) and Guidolin 

(2006) argue that learning influences the investors’ pricing in a highly nonlinear way 

and hence a simulation analysis is necessary to understand the wide scope of 

outcomes that learning generates in asset pricing. Moreover, a simulation approach 

allows us to adjust parameter setups and thus to analyse the effects of learning on 

multiple scenarios.15  

We generate simulations from an economy with breaks and incomplete information 

under Bayesian learning, as described in the previous section. In each combination of 

parameters for the model, we generate 2,000 simulations. For each of these 

simulations, we produce 12 years (3,024 trading days) of daily dividends, which are 

the signals observed by agents to learn about    (which represents 6,048,000 

simulated trading days). The simulations are generated by two nested stochastic 

processes. Firstly, we simulate time series of 12 years of daily dividends using the 

dividend’s geometric random walk process (                       ). Secondly, 

we also induce breaks in    in each simulation (and hence breaks in   ), in which 

periods between breaks follow a geometric process with parameter  . For instance, in 

the case in which a break occurs at time    , we obtain a new value for      drawn 

from the univariate density           defined on the support        , and we keep 

this value constant until the next break.  

The stock prices and bond prices in each simulation are daily calculated using 

Equation (8) and Equation (9), respectively. European option prices are calculated 

monthly using Equation (10) and Equation (11), which are obtained through 

                                                 
15 In addition, Kleidon (1986) presents evidence that the use of standard tests to analyse an equilibrium 
model in a single economy represented by market data could induce erroneous analysis. Kleidon 
(1986) points out that asset prices in equilibrium are calculated based on agents’ expectations about 
future events across multiple and different economies; thus Kleidon (1986) also suggests a simulation 
approach.  
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numerical methods using Monte Carlo simulations based on 20,000 independent 

paths following the stochastic process described in Proposition II.16,17 

We calculate option returns for a put contract and a call contract, both at-the-money 

and with one-month to maturity. Option returns are calculated through a hold-to-

expiration trading strategy. We compute monthly option returns following a 

procedure akin to Ni (2009) and Broadie et al. (2009). The methodology consists in 

constructing time-series of returns with non-overlapping intervals. Put and call hold-

to-maturity returns are defined, respectively, by the following equations: 

    
 

 
             

       
   (12) 

and 

    
  

             

       
    (13) 

where         and         are the prices of call and put options written at time  , with 

  as the strike price and   as the time to maturity, while      is the price of the stock 

at maturity    .  

We also calculate the returns on a put-delta-hedged portfolio, a call-delta-hedged 

portfolio and a straddle portfolio. The put-delta-hedged portfolio (call-delta-hedged 

portfolio) is formed by buying one at-the-money one-month to maturity put contract 

(call contract) and buying (short-selling) delta shares of the stock, where the delta is 

obtained from the Black and Scholes’ (1973) model. The straddle portfolio is 

calculated as a combination of buying one call option contract and one put option 

contract, where both contracts are at-the-money one-month to maturity. Similar to 

option returns, delta-hedged portfolios (for call and put options) and the straddle 

portfolio are obtained using a hold-to-expiration trading strategy on a monthly basis 

and also avoiding overlapping intervals.  

                                                 
16 Note that these 20,000 paths in the Monte Carlo simulation are used to calculate option prices (with 
Equation (10) and Equation (11)) in each month of the 2,000 12-year time-series simulations described 
above. 
17 In the Monte Carlo simulations we also calculate the expected dividend yield and expected zero 
coupon interest rates for the time-to-maturity of each option contract with the objective of calculating 
later implied volatilities.  
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Following academic empirical studies and investors practices (see, e.g., Guidolin and 

Timmermann, 2003; and Gonçalves and Guidolin, 2006), we obtain implied volatilities 

by inverting the Black and Scholes’ (1973) model. It is evident that the assumptions of 

the Black and Scholes’ (1973) model are not followed in our modelling setup. 

However, researchers and practitioners also calculate implied volatilities using the 

Black and Scholes’ (1973) model even though they know that its assumptions are 

violated in the reality by market data. In fact, the empirically observable relationship 

and predictability patterns between assets and the volatility risk premium, which we 

want to explain through our Bayesian learning model, have been observed with Black 

and Scholes’ (1973) implied volatilities.  

We assume the following plausible parameter values to be used in the simulations. We 

calculate asset prices using multiple levels for the coefficient of relative risk aversion 

at 0.2, 0.5 and 5.0. The rate of impatience,  , is set at 0.713% (monthly basis); while 

the new mean dividend growth rate after breaks is extracted from a uniform 

distribution defined between           and            on a monthly basis 

and thus           
   , which are in line with the values used in Timmermann 

(2001).18 The dividend process volatility,  , is set at 0.014% on a monthly basis (i.e., 

5% on an annual basis), which is also consistent with Timmermann (2001). Moreover, 

we use the test introduced by Chu et al. (1996) with real market data to obtain a value 

for the probability of breaks,  , on the mean dividend growth rate. Chu et al. (1996) 

present a dynamic test for structural breaks where market participants can 

contemporaneously identify a break on a given date due to the real-time features of 

their algorithm. We perform this test to calculate   using daily dividend time series 

from the S&P 500 index between 1996 and 2007 (which were deseasonalized and 

adjusted by the consumer price index to obtain real dividends as in Shiller, 2000). We 

find eight breaks in the 3,024 days of the 12 years analysed; and thus we set   at 0.67 

(annual basis). In Appendix B, we describe the model introduced by Chu et al. (1996) 

and the breaks detected. 

                                                 
18 Therefore, and given that new mean dividend growth rates after breaks are extracted from a uniform 
distribution with probability density function                , the dividend drift has as a 
probability density function:                           , where                  and 
                . 
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Furthermore, similar to Goyal and Saretto (2009), Bollerslev (2009) and Cao and Han 

(2013), we calculate the volatility risk premium as the difference between the option 

implied volatility and the realized volatility (i.e.,       which is a simple measure 

for the difference between the risk neutralized and physical volatilities). The    is 

calculated as the average of the implied volatilities of a European put option contract 

and a European call option contract, where both contracts are at-the-money and with 

one-month to maturity. The    is the standard deviation (annual basis) of the daily 

stock log-returns in each month (also avoiding overlapping periods).  

In addition to the volatility risk premium, we also consider a set of other traditional 

predictor variables. We use as predictor variables    and    each of them alone (and 

calculated as described above). We also calculate the    slope on the moneyness 

dimension,         , which is obtained as the difference between the    from 

contracts with          and one-month to maturity (i.e., the average of the call and 

put contracts) and the    from contracts with          and one-month to maturity 

(i.e., also the average of the call and put contracts). Furthermore, we calculate the    

slope on the maturity dimension,         , which is computed as the difference 

between the    from at-the-money contracts with one-month to maturity (i.e., the 

average of the call and put contracts) and the    from at-the money contracts with 

three-months to maturity (i.e., also from call and put contracts).  

The existence of breaks in the mean dividend growth rate and the need of investors to 

learn about such an unstable time-varying parameter cause non-stationarities in 

option prices. To get some intuition for the nature of the instabilities captured by our 

framework, Figure 1 displays one complete simulation path in terms of the simulated 

mean dividend growth rate (g) and at-the-money short-term implied volatilities (   ). 

On the left hand side of the figure, we plot two time series: the time series of the true 

and estimated mean dividend growth rate (i.e., the estimated value of g is obtained 

over time by a rational investor who learns using the Bayes’ rule presented in 

equation (6)). Looking at this time series, one can notice that learning may 

occasionally take a long time. Estimates of g progressively adjust toward the true 

values after each break, which is characterized by two effects. First, the observable 

dividend signals received by the investor are noisy because of the presence of the 
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innovation term in the geometric random walk process. Consequently, the agent 

needs time to learn and thus to obtain accurate values for the unknown g. Second, in 

the figure a new break often appears when learning has improved the precision of the 

agent’s estimations, and hence her accuracy regarding the estimated value of g is 

reduced and a strong learning process starts once again.  

[Insert Figure 1 here] 

On the right hand side of Figure 1, we reports the evolution of the implied volatility 

when there is learning (for the same simulation reported on the left hand side of this 

figure). This plot shows that the occasionally intense revisions of agents’ expectations 

about the (new, post-break) value of    induce an increase in implied volatilities, 

especially in the immediate aftermath of breaks, when the learning speed accelerates 

and revisions are stronger. Figure 1 also shows that the average level of implied 

volatilities decreases as more information is received after each break. Different from 

earlier papers, such as Guidolin and Timmermann (2003), the effects of learning never 

disappear altogether, which is actually what happens in option markets. Thus, Figure 

1 helps emphasizing that the interaction between learning and breaks may 

permanently and dynamically affect both the level and the evolution of implied 

volatilities. 

Basic summary statistics for the simulations generated through our model are given in 

Table 1. In Table 1 and in the rest of the paper we will present only results for the 

returns on put options, the returns on the put-delta-hedged portfolio, and the returns 

on the straddle portfolio. Call option returns and the returns on the call-delta-hedged 

portfolio are unreported since the outcomes with call option contracts are 

quantitatively and qualitatively similar to the results presented here, and also 

congruent with the empirical literature. Nevertheless, the analysis using returns on 

call options and on the call-delta-hedged portfolio are available from the authors upon 

request. 

[Insert Table 1 here] 

In Table 1, the mean excess returns on the put option are equal to -55%, -39%, and –

96% for coefficients of relative risk aversion at 0.2, 0.5, and 5.0 respectively, which are 
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consistent with the levels observed in option market data (see, e.g., Broadie et al., 

2009). The returns on the put-delta-hedged and straddle portfolios are also in line 

with the values reported in previous empirical studies (Gonçalves and Guidolin, 2006; 

and Bernales and Guidolin, 2013).  

 The values of    and    should be equal to 5% in a Black-Sholes economy (where 

realized and implied volatilities are equal) since the dividend process volatility,  , is 

set at 5% in our simulation setup. However, we can see in Table 1 that the agent’s 

learning process generates an increase in    and   , although the rise in the level of 

   is larger. This is explained by the effect of learning on the agent's beliefs. Learning 

induces that extreme events are perceived as more likely which also makes wider the 

risk-neutral probability distribution. This change in the shape of risk-neutral 

probability distribution strongly affects the IV, since it reflects the risk-neutralized 

volatility. Moreover, the learning effects on    and    are also influenced by the 

agent’s attitude toward risks; the implied volatility (realized volatility) is 18%, 12% 

and 57% (6%, 6% and 8%) when   = 0.2,   = 0.5 and   = 5.0, respectively. Thus, 

learning produces a divergence between    and    which explains the ‘existence’ of 

the volatility risk premium.  

Consistently with David and Veronesi (2002), Guidolin and Timmermann (2003) and 

Shaliastovich (2009), we report in Table 1 that learning induces an implied volatility 

surface which is reflected in the implied volatility slopes on the moneyness and 

maturity dimensions. Table 1 shows that the implied volatility slopes on the 

moneyness dimension (        ) and on the maturity dimension (        ) are 

different than zero for all values of the coefficient of relative risk aversion. For 

instance, the average value for          (which is the simple difference between 

implied volatilities from short-term contracts with          and         ) is 

0.05, 0.06 and -0.09 when   = 0.2,   = 0.5 and   = 5.0, respectively.  

Table 1 reports that learning generates strong predictability patterns reflected in the 

first-order autocorrelations for the volatility risk premium,   , and the implied 

volatility slopes (on moneyness and maturity dimensions). Immediately after a break, 

there is insufficient information, causing great uncertainty regarding the reliability of 

asset price estimations. This large uncertainty is reflected in a moderated increase in 
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the realized volatility, but especially in an important growth in implied volatilities as 

explained above. Thus, there is a large volatility risk premium in the initial periods 

after a break which is accompanied by large implied volatility slopes on the 

moneyness and maturity dimensions (given the changes in the shape of the risk-

neutral probability distribution). However, this uncertain reliability declines gradually 

as the agent learns over time. This learning process, where the agent uses new signals 

and historical information in a recursive updating procedure, induces predictive 

dynamics in the volatility risk premium,   , and the implied volatility slopes. Similar 

predictability patterns have been also documented in the empirical literature. For 

instance, Cont and Fonseca (2002) and Gonçalves and Guidolin (2006) find that the 

implied volatility surfaces of S&P 500 options and FTSE 100 index options change 

dynamically over time, where the implied volatility and     slopes display high 

positive autocorrelations and mean reverting behaviours. 

The average correlations of the variables of interest, generated through the model 

simulations, are reported in Table 2. Table 2 presents the results with a coefficient of 

relative risk aversion,  , at 0.2; however, we report additional correlation analyses in 

Appendix C, where we set   at 0.5 and 5.0.19 Table 2 shows that the volatility risk 

premium is negatively related to option returns, which is consistent with Goyal and 

Saretto (2009) and Cao and Han (2013). In 49.32%, 93.71% and 82.48% of the 

simulations, the returns on put contracts, the put-delta-hedged portfolio and the 

straddle portfolio have negative significant correlations with the volatility risk 

premium, respectively. The intuition behind this result is straightforward. As 

discussed previously, when there is a break in the growth rate, there is an increase in 

market uncertainty due to learning which pushes up option prices and the volatility 

risk premium. Since option prices are larger after a break, option returns are smaller 

because the denominator of option returns is bigger (see Equation (12) and Equation 

(13)). Therefore, in our model when there is an elevated level of learning we have a 

high volatility risk premium and low option returns. In fact, option returns and the 

volatility risk premium are not only associated in the cross-section. In the following 

section, we will show, through a lagged regression analysis, that option returns and 

                                                 
19 The results presented in Appendix C are congruent with the findings presented here 
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the volatility risk premium are also dynamically associated in the simulations of our 

learning model. Consequently, Table 2 presents the first set of evidence to support our 

contention that the agent’s learning process may explain the relationship between 

option returns and the volatility risk premium.  

[Insert Table 2 here] 

Table 2 also presents evidence that learning can explain the negative relationship 

between risk-neutral skewness and option returns documented in previous empirical 

studies. For instance, Bali and Murray (2013) report that risk-neutral skewness is 

negatively related to option returns. Following Toft and Prucyk (1997), who show that 

the implied volatility slope of the     along the moneyness dimension (        ) can 

be used as a proxy for risk-neutral skewness, Table 2 shows that there is an 

association generated by learning between option returns and risk-neutral skewness. 

For instance, in close to 42% of the simulations there are significantly negative 

correlations for the returns on put option contracts in relation to         . In the case 

of the returns of the put-delta-hedged portfolio and the straddle portfolio, the 

relationships with          are also negative although only 22.28% and 13.95% of 

the simulations show significant correlations, respectively. Moreover, Table 2 reports 

evidence that the agent's learning process may help us to understand the association 

between option returns and the implied volatility term structure. Vasquez (2012) 

reports that the slope of the implied volatility term structure is positively related with 

option returns. In Table 2,         , which is the negative version of the measure used 

by Vasquez (2012), is negatively related to option returns. In 65.65% and 33.50% of 

the simulations, there are significantly negative correlations between          and 

the returns on the put-delta-hedged portfolio and the straddle portfolio, respectively.  

Furthermore, our results show that option returns are significantly correlated to the 

  , which is also consistent with the empirical literature. For example, Gonçalves and 

Guidolin (2006) and Bernales and Guidolin (2013) report that abnormal economic 

profits, before transaction costs, are generated when the predictability patterns of 

implied volatilities are used to construct option portfolios. Table 2 shows that the 

implied volatility is significantly and negatively correlated with the returns on put 
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option contracts, the put-delta-hedged portfolio and the straddle portfolio in 34.01%, 

69.56%, and 31.97% of the simulations, respectively. 

 

4 Predictability patterns of option returns 

In order to examine whether learning can explain why the volatility risk premium 

predicts option returns, in this section, we firstly employ single-variable regression 

analyses accounting for several forecasting horizons. Afterwards, we consider single-

variable and multivariate regressions to analyse the predictive power of the volatility 

risk premium and other option–implied variables, after including various control 

variables that have been used as traditional return predictors in financial markets. 

The forecasting exercise is based on linear regressions of the excess returns on put 

contracts, put-delta-hedged portfolios and straddle portfolios with different sets of 

lagged forecasting variables. The estimation is by OLS, and the t-statistics are 

computed using the Newey-West procedure to tackle the heteroscedasticity and serial 

correlations.  

In Table 3 we begin by reporting the results for single-variable regressions of option 

returns with one- to twelve-month lagged volatility risk premium. 20 Note that in Table 

3, the percentage of the simulations that have significant statistics is reported in 

parenthesis and is based on one-sided t-tests at the 5% significance level. Table 3 

shows that 51.19% and 25.68% of the simulations obtain significant estimated 

coefficients of the one-month lagged volatility risk premium for the excess returns on 

put-delta-hedged portfolios (RDHput) and straddle portfolios (RSTRD), respectively. This 

implies that the volatility risk premium is not only related to option returns in the 

cross-section (as reported in Table 2), but that the volatility risk premium also has 

predictive power for the returns on option contracts. The estimated coefficients of 

(  -  ) are negative for RDHput and RSTRD, implying that a high level of uncertainty 

proxied by the volatility risk premium makes more negative returns for option 

                                                 
20 To save on space, we only present and discuss the simulation sample with  =0.2 in the main body of 
the paper. The regression results for the simulations with       and       are analogous to those 
with      , and are presented in Appendix C.  
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holders, which is congruent with empirical evidence documented by Goyal and Saretto 

(2009) and Cao and Han (2013).  

It is may be noted in Table 3 that the returns on put-delta-hedged portfolios and 

straddle portfolios have a higher degree of predictability from the volatility risk 

premium relative to simple option put returns (i.e., only 12.41% of the simulations 

have significant estimated coefficients of the one-month lagged volatility risk 

premium for the excess returns on option put contracts). However, this is in line with 

the arguments in Broadie et al. (2009) and Bali and Murray (2013). Broadie et al. 

(2009) and Bali and Murray (2013) explain that since delta-hedged portfolios and 

straddle portfolios are free of risk caused by changes in the underlying asset price, 

they are more informative about potential deviations in option valuations than 

individual option contracts.  

[Insert Table 3 here] 

We also observe in Table 3 that the predictive power of the volatility risk premium is 

reduced as the forecasting horizons increase. The percentage of the simulations that 

have significant estimated coefficients declines as forecasting periods become longer. 

For instance, when twelve-month lagged VRP is used to predict Rput, RDHput and RSTRD, 

only 7.99%, 14.97% and 12.07% of the simulations have a significant estimated 

coefficient, respectively. In addition, the average estimated coefficients of the one-

month lagged VRP start at      ,       and       for Rput, RDHput and RSTRD, 

respectively; nevertheless the average absolute value of the coefficients decreases 

gradually with larger forecasting horizons. The average estimated coefficients of the 

twelve-month lagged volatility risk premium for Rput, RDHput and RSTRD is      ,       

and      , respectively. Figure 2 graphically presents the reduction in the 

predictability features of VRP regarding option returns when the forecasting periods 

increase. Taken as a whole, the results presented in Table 3 and Figure 2 reveal that 

the predictable patterns caused by the agent's learning process, in which the highest 

degree of predictability afforded by the volatility risk premium occurs at the one-

month forecasting horizon, decline in longer forecasting horizons.  

[Insert Figure 2 here] 
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Furthermore, Table 4 and Table 5 present a forecasting regression analysis in which 

we include additional predictor variables lagged in one-month and three-month 

periods, repetitively. Differently to Table 3, where the percentage of simulations that 

have significant statistics is based on one-sided t-tests, in Table 4 and Table 5 the 

same percentage values are based on two-sided t-tests since we do not want to 

impose any directional relationship in the multivariable regression analysis. At first 

glance, the results for put-delta-hedged returns and straddle returns reported in Table 

4 Panel B and Panel C are most interesting since the predictability of (  -  ) on 

option returns is strong, which is consistent to Table 3.  

[Insert Table 4 here] 

[Insert Table 5 here] 

Table 4 reports that the implied volatility slopes on the moneyness and maturity 

dimensions,          and         , exhibit a predictive power for option returns. For 

instance, the average estimated coefficient of          and          for        is -

0.02 and -0.37, with 25.34% and 64.29% of the simulations obtaining statistically 

significant coefficients, respectively. These results are in line with Gonçalves and 

Guidolin (2006) and Bernales and Guidolin (2013), who find that the movements of 

the option     are highly predictable, leading to significant economic profits in 

portfolios with option contracts. Bali and Murray (2013) also report that risk-neutral 

skewness, which is associated with the implied volatility slope on the moneyness 

dimension, forecasts option returns. Moreover, Vasquez (2012) reports that the 

implied volatility term structure (i.e., the slope of     on the maturity dimension) has 

a forecasting power regarding returns on option contracts. 

Likewise, Table 4 shows that    has an important predictive power. The estimated 

coefficients of the one-month lagged    are significant in 66.33% and 24.83% of the 

simulations for        and      , respectively. This is congruent with Gonçalves and 

Guidolin (2006), Jones (2006), Cao and Huang (2007) and Constantinides et al. 

(2013), who show that implied volatilities are dynamically associated to returns of 

option portfolios. 
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In relation to non-   predictor variables in Table 4, although    shows a negative 

relationship with option returns, which is consistent with the existing empirical 

literature (see Baski and Kapadia, 2003a,b; Bollerslev et al., 2009; Constantinides et 

al., 2013; Cao and Han, 2013), the predictive power that    presents for the different 

option portfolio returns is much lower than predictive power of the volatility risk 

premium,    and     slopes. For example, the single-variable regressions in Table 4 

Panel B show that the average estimated coefficient of the one-month lagged    for 

       is -     and only 11.73% of the simulations have a significant coefficient. 

Conversely, the estimated coefficients of (  -  ),   ,          and          obtain 

significant statistics in 43.37%, 66.33%, 25.34% and 64.29% of the simulations, 

respectively. In addition, Table 4 shows that other traditional predictor variables, such 

as the dividend yield,         , and the excess return on the stock,     , also display 

much less predictive power over option returns. 

Regarding the multivariate regressions reported in Table 4, we select predictor 

variables in such a way that multicollinearity problems are reduced. Table 4 shows 

that even after including other predictor variables such as      and         , the 

regressions involving (  -  ) and other    related predictor variables (i.e.,   , 

         and         ) still have an important predictability power on option 

returns. For instance, the multivariate regression in Table 4 Panel B shows with put-

delta-hedged portfolio returns (      ) that 42.18%, 65.99%, 25.34% and 63.78% of 

simulations have significant coefficients for the volatility risk premium,   ,          

and         , respectively.  

The three-month forecasting regressions presented in Table 5 confirm the findings 

reported in Table 4. On the one side, the single-variable regressions in Table 5 have 

high percentage values of simulations with significant estimated coefficients for (  -

  ),    and     slopes, especially for put-delta-hedged returns (      ) and straddle 

returns (     ). On the other side, the percentage of simulations with significant 

estimated coefficients is much lower for non-   related predictors (i.e.,   ,          

and   ) than for those option-implied variables. For instance, Table 5 Panel B shows 

that for put-delta-hedged returns (      ), 29.93%, 48.64%, 18.20% and 46.94% of 

the simulations for (  -  ),   ,          and          have significant estimated 
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coefficients, respectively. Conversely, Table 5 Panel B reports that single-variable 

regressions for a maximum 10.88% of the simulations have significant estimated 

coefficients for non-   related predictor variables. Moreover, the predictability 

features of option-implied variables on option returns are observable in multivariable 

regressions, even after adding other predictor variables such as      and         .  

Nevertheless, the predictive power of the three-month lagged option-implied 

variables in Table 5 is lower than the predictive power reported with one-month 

lagged regressions in Table 4. The reduction in the predictive power is reflected in 

terms of the percentage of the simulations having significant statistics and adjusted 

R2. This reinforces our findings in Table 3, where we show that the predictability 

features of the volatility risk premium decline with longer forecasting horizons.  

 

5 Conclusions 

In this paper, we consider a dynamic equilibrium model under rational learning to 

explain the puzzling predictive power of the volatility risk premium and other option-

implied variables on option returns, which has been documented in the empirical 

literature. We extend the simple discrete-time endowment economy proposed by 

Lucas (1978), where we assume that the fundamental mean dividend growth rate is 

subject to breaks and is unknown by the representative agent. However, the agent 

learns recursively as new information arrives following a Bayesian updating 

procedure, and evaluates option prices accordingly.  

Through an extensive set of simulations, we show that the learning process explains 

why the volatility risk premium can predict option returns. This explains the option 

return puzzle documented in Goyal and Saretto(2009) and Cao and Han (2013), 

where the volatility risk premium has a predictive power on returns of option 

portfolios. Our results are robust across various types of option trading strategies and 

the inclusion of alternative predictor variables.  

Furthermore, we find that learning explains the forecasting features of the implied 

volatility and     slopes on returns of portfolios with option contracts. Thus, our 

learning model also provides an explanation for empirical studies regarding the 
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relationship between predictive dynamics in implied volatilities and option returns 

(e.g., Gonçalves and Guidolin, 2006; Bernales and Guidolin, 2013), the forecasting 

relationship of option returns with implied skewness (e.g., Bali and Murray, 2013), 

and the association between the slope of the implied volatility term structure and 

predictions on option returns (e.g., Vasquez, 2012). Nevertheless, and similar to 

previous empirical studies, the predictive power induced by learning of the volatility 

risk premium, implied volatility and the implied volatility slopes is high in the one-

month forecasting horizon, then tapers off over longer investment periods. 

Finally, the model presented in our study is simple and intuitive, since it is based on 

generally accepted assumptions concerning preferences and the stochastic process of 

the fundamentals which drive asset prices. However, other interesting issues remain 

to be addressed. For instance, the study of cognitive mechanisms in a microstructure 

setup where trading is performed through market makers who also learn, the analysis 

of a model in which there are noisy and irrational traders, and the investigation of 

learning when there is asymmetric information among agents are left for future 

research. 

 

Appendix A 

Proof of Proposition II: Equation (4) and Equation (5) can be obtained from no-

arbitrage arguments with respect to a contingent claim with values given by 

          
    and         

     , respectively. Therefore, we have to prove that the 

probabilities that describe the state price density are risk-neutralized.  

As a first step, we take the Euler equation of the stock price: 

     
          

      
    

 
  

       
                (A1) 

Then, we divide both sides of Equation (A1) by the one-period zero-coupon bond with 

unit price to the expiration (obtained from Equation (3)): 
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We know that the forward price and the forward cumulative dividend process are: 
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and 
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We also know from the pricing kernel that: 
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If we add     
  to both sides of Equation (A2) and we use Equation (A5), then we 

obtain: 

 

    
        

 

        
      
    

 
       

             
             

          
  
  

       
   

       
           

(A6) 

Consequently, through Equation (A6) we demonstrate that     
        

  follows a 

martingale under the conditional probability measure; and hence the risk-neutral 

density is: 

 

        
   

   
    
  

 
       

             
             

          
  
  

                
(A7) 

Thus, the one-period state-price density is: 
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(A8) 

where     
   is the one-period risk-free interest rate.  

Moreover, if the risk-neutral measure on a single-period model is unique and exists, 

this is a sufficient condition to have a unique risk-neutral measure on an infinite-

period economy obtained by repetition of several single-period models [see Pliska 

(1997) for proof]. In our model, the infinite-period model risk-neutral measure can be 

characterized by using the independence of breaks on the mean dividend growth rates 

and taking all paths that could guide to a particular state in     periods ahead. Thus, 

        
    is the state price density of all paths that lead to the state in which the 

dividend is     , where the expected value of      is: 

               
    
  

      
    
    

          
    
      

       (A9) 

In addition, using the independence of          
  and            

  we have: 

                                            

 

   

    (A10) 

Furthermore, let   be the number of breaks between   and     that is a random 

variable drawn from a Binomial distribution,         , with parameters   and  ; 

while        
  are the time periods between breaks which are also random variables 

that follow a geometric distribution with parameter  ,        , where      
 
   . 

Therefore, in each path we have: 

     
                                 

  

 

   

   (A11) 

Here           
 

 are drawn from a univariate density            and pdf          

defined on the support        ; while          and           . Consequently, 
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                                                                        (A12) 

Hence from Equation (A8) we can write: 

 

        
   

    
    
  

 
  

                                                                      
(A13) 

□ 

 

Appendix B 

Probability of breaks in the mean dividend growth rate 

We estimate the probability of breaks in the mean dividend growth rate through the 

test introduced by Chu et al. (1996). Chu et al. (1996) introduce a dynamic test with 

which we can contemporaneously detect a break on a given date due to the real-time 

features of their algorithm. As in our model, let us assume that real dividends evolve 

following a geometric random walk:                        . Let   be the 

minimum number of periods over which the drift,     , is assumed to be constant, 

given that   is the number of periods from the last break (i.e.                   

      ). Therefore, the representative agent starts detecting the presence of breaks 

after the span period  . In this context, Chu et al. (1996) propose the use of the 

following fluctuation detector in the case of a univariate location model: 

         
             (B-1) 

Here,     and     are the parameter estimates at time   and  . We defined    as the 

vector of signals about    in Equation (6) and Equation (7); therefore         
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Assuming a null hypothesis of no break, Chu et al. (1996) present asymptotic bounds 

for the statistic      : 
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where      and      are the cdf and pdf of a standard normal random variable, 

respectively, while a is a constant related to the significance level of the test. 

Therefore, the intuition behind this test is that given a significance level, an agent 

could start the calculation of     recursively and in real-time after   signals received 

from the previous break, with the objective of detecting a new one. The testing 

process starts again after the detection of each new break. In this paper we assume 

that dividends are paid out daily, which is true for wide market indexes. For that 

reason, we use daily dividend time series from the S&P 500 index between 1996 and 

2007, which were deseasonalized and adjusted by the consumer price index. We set 

 =125 which represents six months of trading dates, and we use 5% significance. We 

detect eight breaks in the period between 1996 and 2007. Figure B-1 shows the 

breaks detected in this period. 

[Insert Figure B-1 here] 

 

Appendix C 

Additional experiments and robustness checks  

This appendix presents simulation results for additional parameter setups. Table C-1 

and Table C-2 show correlation analyses with a coefficient of relative risk aversion 

equal to 0.5 and 5.0, respectively. Table C-3 and Table C-4 report volatility risk 

premium regressions also with a coefficient of relative risk aversion equal to 0.5 and 

5.0, respectively. Finally, Table C-5 and Table C-6 (Table C-7 and Table C-8) present 

single-variable and multivariable regressions of one-month lagged (three-month 

lagged) predictor variables in which the level of relative risk aversion is set at 0.5 and 

5.0, respectively.  

It is important to notice that when    , in general representative agent endowment-

based asset pricing models display a counter-intuitive feature by which stock prices 

are lower when    increases (see Abel, 1988; Cecchetti et al., 1990). Despite this 

counter-intuitive properties of dynamic equilibrium models when    , we include 

them in our analyses to be consistent with the large literature in which   > 1 has been 

estimated or used to explain properties of asset prices. 
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 [Insert Table C-1 here] 

[Insert Table C-2 here] 

[Insert Table C-3 here] 

[Insert Table C-4 here] 

[Insert Table C-5 here] 

[Insert Table C-6 here] 

[Insert Table C-7 here] 

[Insert Table C-8 here] 
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Table 1 
Summary statistics 
The table contains summary statistics of the main variables in the model simulations performed in our 
study. The simulations are based on an economy with breaks and incomplete information under 
Bayesian learning. The table reports results for three coefficients of relative risk aversion (     , 
      and       .        is the excess return on an at-the-money one-month to maturity put option 

contract,          is the excess return on a put-delta-hedged portfolio that is formed by buying one at-

the-money one-month to maturity put option contract and buying delta shares of the stock,         is 

the excess return on a straddle portfolio that is calculated as a combination of one call option contract 
and one put option contract; where both contracts are at-the-money one-month to maturity.       , 

         and         are obtained using a hold-to-expiration trading strategy on a monthly basis and 

with non-overlapping intervals as in Ni (2009) and Broadie et al. (2009). The implied volatility,    , is 
expressed on an annual basis and calculated as the average of the Black-Scholes’ (1973) implied 
volatilities of a European put option contract and a European call option contract, where both contracts 
are at-the-money and with one-month to maturity; while     is the standard deviation (annual basis) of 
the daily stock log-returns in each month also avoiding overlapping periods. The slope on the 
moneyness dimension of the implied volatility surface,         , is calculated as the difference 
between the implied volatility of contracts with          and one-month to maturity and the implied 
volatility of contracts with          and one-month to maturity. The slope on the maturity 
dimension of the implied volatility surface,         , is calculated as the difference between the implied 
volatility of at-the-money contracts with one-month to maturity and the implied volatility of at-the-
money contracts with three-months to maturity. The AR(1) statistics are the values of the LM test for 
ARCH effects suggested by Engle (1982) using one lag. The numbers in the table are the average 
estimates over 2,000 simulations; for each of these simulations, we generate 12 years (3,024 days) of 
daily dividends. The percentage of the simulations with significant statistics for the respective 
diagnostic tests is reported in parentheses at 5% significance. 

 
 

 

 

 

Scenario R put,t R DHput,t R STRD,t IV t  - RV t IV t RV t Slope Mon,

t

Slope Mat,t

Mean -0.55 -0.02 -0.50 0.12 0.18 0.06 0.05 0.04

Std. dev. 0.76 0.01 0.39 0.02 0.02 0.01 0.06 0.01

Skewness 2.01 0.89 1.14 -0.28 -0.39 1.17 -0.11 -0.61

Kurtosis 7.84 4.12 4.80 5.67 6.63 7.75 4.36 7.49

AR(1) -0.01 0.03 0.00 0.40 0.82 0.06 0.77 0.80

(4.76) (11.05) (6.46) (89.80) (99.32) (14.12) (99.66) (98.81)

Mean -0.39 -0.01 -0.35 0.06 0.12 0.06 0.06 0.02

Std. dev. 1.02 0.01 0.51 0.01 0.01 0.01 0.05 0.01

Skewness 1.96 0.92 1.02 -0.09 -0.24 0.48 -0.37 -0.37

Kurtosis 7.17 4.05 4.00 4.80 7.03 4.17 5.01 7.92

AR(1) -0.01 0.00 0.00 0.24 0.80 0.03 0.71 0.75

(4.59) (7.48) (6.63) (66.84) (98.98) (8.16) (99.49) (98.47)

Mean -0.96 -0.08 -0.92 0.48 0.57 0.08 -0.09 0.17

Std. dev. 0.30 0.02 0.28 0.09 0.09 0.05 0.10 0.04

Skewness 7.41 2.20 7.05 -0.58 -0.14 6.03 -0.68 0.03

Kurtosis 64.96 14.04 60.35 5.56 4.18 43.96 3.76 5.49

AR(1) 0.01 0.19 0.00 0.71 0.84 0.03 0.87 0.81

(3.83) (51.11) (1.05) (98.08) (99.83) (2.79) (100.00) (99.65)

α  = 0.2

Breaks - Inc. Inf. 

(Learning)

α  = 0.5

α  = 5.0
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Table 2 
Correlation matrix 
The table reports a correlation analysis of the main variables generated in the model simulations 
performed in our study. The simulations are based on an economy with breaks and incomplete 
information under Bayesian learning. This table presents the results with a coefficient of relative risk 
aversion,  , at 0.2; however, additional correlation analyses with different coefficients of risk aversion 
are reported in Appendix C. The variables       ,         ,        ,    ,    ,                       are 

defined in Table 1. The numbers in the table are the average estimates over 2,000 simulations; for each 
of these simulations, we generate 12 years (3,024 days) of daily dividends. The percentage of the 
simulations with significant statistics for the respective diagnostic tests is reported in parentheses at 
5% significance. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
 

R put,t R DHput,t R STRD,t IV t  - RV t IV t RV t Slope Mon,t Slope Mat,t

R put,t 1.00 0.49 0.37 -0.16 -0.09 0.13 -0.14 -0.05

(100.00) (100.00) (98.64) (49.32) (34.01) (33.84) (41.50) (29.42)

R DHput,t 1.00 0.97 -0.32 -0.22 0.21 -0.06 -0.21

(100.00) (100.00) (93.71) (69.56) (63.61) (22.28) (65.65)

R STRD,t 1.00 -0.26 -0.12 0.23 -0.02 -0.12

(100.00) (82.48) (31.97) (70.75) (13.95) (33.50)

IV t  - RV t 1.00 0.65 -0.65 0.35 0.59

(100.00) (100.00) (97.96) (84.52) (99.83)

IV t 1.00 0.12 0.22 0.95

(100.00) (42.35) (71.60) (100.00)

RV t 1.00 -0.27 0.16

(100.00) (81.29) (51.53)

Slope Mon,t 1.00 0.07

(100.00) (64.63)

Slope Mat,t 1.00

(100.00)

Breaks - Inc. Inf. (Learning)  and  α  = 0.2
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Table 3 
Volatility risk premium regressions 
The table presents single-variable regressions of lagged the volatility risk premium on hold-to-maturity 
put option returns (Rput), put-delta-hedged portfolio returns (RDHput) and straddle portfolio returns 
(RSTRD) over 1-, 3-, 6-, 9- and 12-month forecasting horizons. The variables (    –    ),       ,         , 

        are defined in Table 1. The simulations are based on an economy with breaks and incomplete 

information under Bayesian learning. This table presents the results with a coefficient of relative risk 
aversion,  , at 0.2; however, additional regression analyses with different coefficients of risk aversion 
are reported in Appendix C. To adjust for heteroscedasticity and serial correlation, robust Newey-West 
(1987) t-statistics are used in the t-tests. The numbers in the table are the average estimates over 2,000 
simulations; for each of these simulations, we generate 12 years (3,024 days) of daily dividends. The 
percentage of the simulations with significant statistics for the respective diagnostic tests is reported in 
parentheses at 5% significance on one-sided t-tests. 

 

Monthly forecasting horizons 1 3 6 9 12

Constant -0.37 -0.48 -0.50 -0.51 -0.54

(41.50) (55.61) (58.67) (60.03) (64.80)
IV t  - RV t -2.69 -1.03 -0.64 -0.49 -0.04

(12.41) (8.67) (9.18) (7.14) (7.99)

Adj. R 2 (%) 0.55 0.04 0.06 -0.08 0.04

Constant -0.01 -0.01 -0.01 -0.01 -0.01

(56.29) (67.18) (77.55) (85.20) (87.07)
IV t  - RV t -0.11 -0.09 -0.06 -0.04 -0.02

(51.19) (38.10) (27.04) (16.67) (14.97)

Adj. R 2 (%) 3.34 1.87 1.05 0.59 0.35

Constant -0.37 -0.40 -0.43 -0.46 -0.48

(75.85) (78.74) (84.18) (87.93) (89.97)
IV t  - RV t -1.91 -1.56 -1.02 -0.66 -0.36

(25.68) (22.62) (14.63) (11.05) (12.07)

Adj. R 2 (%) 0.92 0.64 0.31 0.17 0.06

Breaks - Inc. Inf. (Learning)  and  α  = 0.2

Dependent Variable R put,t 

Dependent Variable R DHput,t 

Dependent Variable R STRD,t 



35 
 

Table 4 
Monthly return regression 
The table reports single-variable and multivariable regressions of one-month lagged predictor variables on hold-to-maturity put option contract returns Rput 
(Panel A), put-delta-hedged portfolio returns RDHput (Panel B) and straddle portfolio returns RSTRD (Panel C). The simulations are based on an economy with 
breaks and incomplete information under Bayesian learning. This table presents the results with a coefficient of relative risk aversion,  , at 0.2; however, 
additional regression analyses with different coefficients of risk aversion are reported in Appendix C. The variables (    –    ),       ,         ,        ,    ,    , 

                      are defined in Table 1. The dividend yield,          , is implicitly obtained from the call-put parity relationship of the European put and 

call option contracts (at-the-money one-month to maturity contracts).      is the excess return on the stock (the stock price is calculated with Equation (8)). To 

adjust for heteroscedasticity and serial correlation, robust Newey-West (1987) t-statistics are used in the t-tests. The numbers in the table are the average 
estimates over 2,000 simulations; for each of these simulations, we generate 12 years (3,024 days) of daily dividends. The percentage of the simulations with 
significant statistics for the respective diagnostic tests is reported in parentheses at 5% significance on two-sided t-tests. 

 

 

 

Panel A.

Constant -0.37 0.16 -0.52 -0.53 -0.46 -0.35 -0.55 -0.01 0.54 -0.27 -0.11 -0.21

(32.65) (6.63) (34.18) (97.28) (28.91) (7.48) (99.66) (8.33) (6.46) (7.99) (9.18) (8.84)

IV t  - RV t -2.69 -2.68

(7.99) (7.99)

IV t -5.30 -5.43

(9.01) (9.52)

RV t -0.44 -0.41

(6.12) (6.12)

Slope Mon,t -0.37 -0.45

(6.46) (8.16)

Slope Mat,t -2.32 -2.23

(6.63) (6.63)

DivYield t -3.50 -6.13 -6.21 -4.40 -7.15 -4.37

(4.93) (7.14) (7.48) (7.31) (7.99) (8.16)

R m,t 0.31 0.56 0.50 0.42 0.78 0.31

(5.78) (5.95) (5.95) (6.29) (6.12) (5.95)

Adj. R 2 (%) 0.55 0.99 0.02 0.12 0.34 0.02 -0.04 0.57 1.00 0.04 0.20 0.34

Dependent Variable R put,t 

Breaks - Inc. Inf. (Learning)  and  α  = 0.2

Monthly return regression
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Panel B.

Constant -0.01 0.01 -0.01 -0.02 0.00 -0.02 -0.02 -0.01 0.01 -0.02 -0.02 -0.01

(44.73) (25.51) (68.37) (99.83) (14.29) (21.60) (100.00) (12.59) (7.99) (18.88) (17.01) (10.03)

IV t  - RV t -0.11 -0.11

(43.37) (42.18)

IV t -0.22 -0.22

(66.33) (65.99)

RV t -0.03 -0.02

(11.73) (11.56)

Slope Mon,t -0.02 -0.02

(25.34) (25.34)

Slope Mat,t -0.37 -0.37

(64.29) (63.78)

DivYield t 0.13 0.10 0.07 0.15 0.10 0.12

(12.76) (10.54) (8.84) (14.46) (12.41) (10.20)

R m,t 0.00 -0.01 0.00 -0.01 0.00 -0.01

(6.80) (6.80) (6.29) (8.67) (7.14) (7.31)

Adj. R 2 (%) 3.34 5.85 0.32 1.93 5.45 0.24 0.12 3.43 5.85 0.68 2.12 5.50

Dependent Variable R DHput,t 

Monthly return regression

Breaks - Inc. Inf. (Learning)  and  α  = 0.2
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Panel C.

Constant -0.37 -0.01 -0.47 -0.48 -0.22 -0.72 -0.50 -0.56 -0.16 -0.72 -0.67 -0.42

(65.65) (9.35) (72.79) (100.00) (33.16) (17.86) (100.00) (13.61) (8.50) (16.67) (16.50) (12.24)

IV t  - RV t -1.91 -1.84

(17.86) (17.35)

IV t -3.75 -3.74

(24.83) (23.81)

RV t -0.51 -0.44

(9.01) (8.67)

Slope Mon,t -0.33 -0.31

(14.46) (13.78)

Slope Mat,t -6.90 -6.93

(25.34) (25.17)

DivYield t 3.77 3.17 2.57 4.27 3.08 3.40

(10.03) (8.67) (7.31) (9.69) (9.01) (8.16)

R m,t -0.08 -0.11 -0.03 -0.18 -0.07 -0.14

(6.97) (6.97) (6.46) (7.48) (6.63) (7.14)

Adj. R 2 (%) 0.92 1.87 0.10 0.48 1.83 0.09 0.03 0.97 1.88 0.23 0.56 1.86

Monthly return regression

Breaks - Inc. Inf. (Learning)  and  α  = 0.2

Dependent Variable R STRD,t 
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Table 5 
Three-month return regressions 
The table reports single-variable and multivariable regressions of three-month lagged predictor variables on hold-to-maturity put option contract returns Rput 
(Panel A), put-delta-hedged portfolio returns RDHput (Panel B) and straddle portfolio returns RSTRD (Panel C). The simulations are based on an economy with 
breaks and incomplete information under Bayesian learning. This table presents the results with a coefficient of relative risk aversion,  , at 0.2; however, 
additional regression analyses with different coefficients of risk aversion are reported in Appendix C. The variables (    –    ),       ,         ,        ,    ,    , 

                      are defined in Table 1. The dividend yield,           and      are defined in Table 4. To adjust for heteroscedasticity and serial 

correlation, robust Newey-West (1987) t-statistics are used in the t-tests. The numbers in the table are the average estimates over 2,000 simulations; for each 
of these simulations, we generate 12 years (3,024 days) of daily dividends. The percentage of the simulations with significant statistics for the respective 
diagnostic tests is reported in parentheses at 5% significance on two-sided t-tests.  

 

Panel A.

Constant -0.48 -0.25 -0.51 -0.56 -0.42 -0.24 -0.55 -0.07 0.18 -0.15 -0.20 -0.07

(44.56) (11.73) (35.37) (98.64) (27.89) (7.31) (99.83) (5.78) (5.27) (6.12) (6.29) (5.61)

IV t  - RV t -1.03 -1.04

(6.80) (6.29)

IV t -2.28 -2.38

(9.52) (9.01)

RV t -0.60 -0.57

(6.80) (7.14)

Slope Mon,t 0.14 0.10

(7.14) (6.46)

Slope Mat,t -3.24 -3.30

(8.33) (8.16)

DivYield t -5.29 -6.93 -7.06 -6.22 -6.12 -5.98

(5.95) (5.27) (5.61) (5.61) (5.61) (5.61)

R m,t 0.11 0.35 0.31 0.32 0.31 0.20

(6.29) (4.08) (4.59) (3.74) (4.59) (4.59)

Adj. R
2
 (%) 0.04 0.23 -0.04 0.01 0.19 0.03 -0.02 0.01 0.21 -0.07 0.00 0.16

Dependent Variable R put,t 

Three-month return regression

Breaks - Inc. Inf. (Learning)  and  α  = 0.2
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Panel B. 

Constant -0.01 0.00 -0.02 -0.02 -0.01 -0.01 -0.02 -0.01 0.01 -0.01 -0.01 0.00

(55.95) (15.99) (73.13) (99.83) (28.23) (14.63) (100.00) (8.50) (10.37) (14.80) (12.07) (9.69)

IV t  - RV t -0.09 -0.08

(29.93) (27.72)

IV t -0.16 -0.16

(48.64) (46.77)

RV t -0.01 -0.01

(10.88) (9.18)

Slope Mon,t -0.01 -0.01

(18.20) (17.69)

Slope Mat,t -0.25 -0.25

(46.94) (44.39)

DivYield t -0.03 -0.08 -0.11 -0.03 -0.07 -0.07

(10.88) (8.50) (10.37) (10.20) (9.69) (9.35)

R m,t 0.00 0.00 0.00 0.00 0.00 0.00

(6.46) (5.95) (5.61) (5.78) (5.44) (5.61)

Adj. R
2
 (%) 1.87 3.18 0.18 1.03 2.86 0.24 0.00 1.96 3.22 0.40 1.19 2.92

Dependent Variable R DHput,t 

Breaks - Inc. Inf. (Learning)  and  α  = 0.2

Three-month return regression
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Panel C.

Constant -0.40 -0.15 -0.49 -0.49 -0.33 -0.48 -0.50 -0.33 -0.04 -0.48 -0.42 -0.25

(69.56) (13.10) (75.51) (100.00) (42.69) (13.95) (100.00) (10.20) (10.03) (12.93) (12.76) (10.88)

IV t  - RV t -1.56 -1.52

(15.99) (15.65)

IV t -2.67 -2.67

(21.60) (21.26)

RV t -0.15 -0.09

(8.67) (7.82)

Slope Mon,t -0.24 -0.25

(12.59) (11.39)

Slope Mat,t -4.37 -4.37

(21.43) (21.77)

DivYield t -0.37 -1.23 -1.96 -0.27 -1.13 -1.39

(7.65) (8.16) (8.67) (8.16) (8.50) (9.35)

R m,t -0.08 -0.03 0.06 -0.06 0.00 -0.02

(6.29) (5.78) (5.78) (5.78) (4.76) (5.27)

Adj. R
2
 (%) 0.64 1.09 0.08 0.35 1.03 0.13 -0.05 0.67 1.11 0.13 0.37 1.06

Dependent Variable R STRD,t 

Breaks - Inc. Inf. (Learning)  and  α  = 0.2

Three-month return regression
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Table C-1 
Correlation matrix with a coefficient of relative risk aversion equal to 0.5 
The table reports a correlation analysis of the main variables generated in the model simulations 
performed in our study. The simulations are based on an economy with breaks and incomplete 
information under Bayesian learning. This table presents the results with a coefficient of relative risk 
aversion,  , at 0.5; however, additional correlation analyses with different coefficients of risk aversion 
are reported in Appendix C. The variables       ,         ,        ,    ,    ,                       are 

defined in Table 1. The numbers in the table are the average estimates over 2,000 simulations; for each 
of these simulations, we generate 12 years (3,024 days) of daily dividends. The percentage of the 
simulations with significant statistics for the respective diagnostic tests is reported in parentheses at 
5% significance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R put,t R DHput,t R STRD,t IV t  - RV t IV t RV t Slope Mon,t Slope Mat,t

R put,t 1.00 0.53 0.36 -0.14 -0.07 0.11 -0.08 -0.05

(100.00) (100.00) (96.94) (38.10) (29.08) (26.87) (17.86) (25.00)

R DHput,t 1.00 0.97 -0.25 -0.15 0.19 -0.03 -0.14

(100.00) (100.00) (82.14) (43.88) (61.22) (14.46) (39.29)

R STRD,t 1.00 -0.23 -0.11 0.19 0.00 -0.11

(100.00) (75.34) (28.40) (62.24) (10.37) (29.08)

IV t  - RV t 1.00 0.52 -0.79 0.32 0.47

(100.00) (100.00) (99.66) (82.14) (98.81)

IV t 1.00 0.08 0.31 0.92

(100.00) (30.78) (77.89) (100.00)

RV t 1.00 -0.17 0.09

(100.00) (51.87) (31.80)

Slope Mon,t 1.00 0.22

(100.00) (68.88)

Slope Mat,t 1.00

(100.00)

Breaks - Inc. Inf. (Learning)  and  α  = 0.5
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Table C-2 
Correlation matrix with a coefficient of relative risk aversion equal to 5.0 
The table reports a correlation analysis of the main variables generated in the model simulations 
performed in our study. The simulations are based on an economy with breaks and incomplete 
information under Bayesian learning. This table presents the results with a coefficient of relative risk 
aversion,  , at 5.0; however, additional correlation analyses with different coefficients of risk aversion 
are reported in Appendix C. The variables       ,         ,        ,    ,    ,                       are 

defined in Table 1. The numbers in the table are the average estimates over 2,000 simulations; for each 
of these simulations, we generate 12 years (3,024 days) of daily dividends. The percentage of the 
simulations with significant statistics for the respective diagnostic tests is reported in parentheses at 
5% significance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R put,t R DHput,t R STRD,t IV t  - RV t IV t RV t Slope Mon,t Slope Mat,t

R put,t 1.00 0.35 0.47 -0.19 0.15 0.56 0.11 0.16

(100.00) (81.18) (77.87) (58.89) (58.71) (90.07) (14.98) (58.19)

R DHput,t 1.00 0.72 -0.82 -0.45 0.59 -0.21 -0.41
(100.00) (100.00) (99.83) (93.73) (96.52) (73.17) (91.64)

R STRD,t 1.00 -0.38 0.18 0.92 0.12 0.19

(100.00) (91.29) (57.84) (100.00) (18.64) (64.46)

IV t  - RV t 1.00 0.80 -0.28 0.50 0.74

(100.00) (100.00) (75.44) (91.81) (99.83)

IV t 1.00 0.31 0.60 0.95

(100.00) (92.51) (93.03) (99.83)

RV t 1.00 0.20 0.32

(100.00) (62.20) (90.24)

Slope Mon,t 1.00 0.50

(100.00) (90.07)

Slope Mat,t 1.00

(100.00)

Breaks - Inc. Inf. (Learning)  and  α  = 5.0
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Table C-3 
Volatility risk premium regressions with a coefficient of relative risk aversion equal to 0.5 
The table presents single-variable regressions of lagged the volatility risk premium on hold-to-maturity 
put option returns (Rput), put-delta-hedged portfolio returns (RDHput) and straddle portfolio returns 
(RSTRD) over 1-, 3-, 6-, 9- and 12-month forecasting horizons. The variables (    –    ),       ,         , 

        are defined in Table 1. The simulations are based on an economy with breaks and incomplete 

information under Bayesian learning. This table presents the results with a coefficient of relative risk 
aversion,  , at 0.5; however, additional regression analyses with different coefficients of risk aversion 
are reported in Appendix C. To adjust for heteroscedasticity and serial correlation, robust Newey-West 
(1987) t-statistics are used in the t-tests. The numbers in the table are the average estimates over 2,000 
simulations; for each of these simulations, we generate 12 years (3,024 days) of daily dividends. The 
percentage of the simulations with significant statistics for the respective diagnostic tests is reported in 
parentheses at 5% significance on one-sided t-tests. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 
 
 
 
 
 
 

Monthly forecasting horizons 1 3 6 9 12

Constant -0.26 -0.36 -0.37 -0.37 -0.39

(31.97) (40.82) (43.37) (42.18) (48.98)
IV t  - RV t -3.93 -0.86 -0.54 -0.32 0.25

(10.71) (6.80) (8.16) (6.80) (8.67)

Adj. R 2 (%) 0.38 -0.04 0.04 -0.10 0.06

Constant -0.01 -0.01 -0.01 -0.01 -0.01

(57.82) (66.84) (71.26) (78.06) (79.93)
IV t  - RV t -0.07 -0.05 -0.03 -0.02 -0.01

(24.32) (19.73) (12.76) (10.54) (9.69)

Adj. R 2 (%) 1.26 0.46 0.23 0.10 0.05

Constant -0.28 -0.29 -0.31 -0.33 -0.34

(64.63) (67.35) (70.58) (75.00) (77.89)
IV t  - RV t -1.88 -1.65 -0.97 -0.54 -0.23

(15.99) (14.46) (10.37) (8.16) (9.18)

Adj. R 2 (%) 0.31 0.25 0.11 0.06 0.00

Dependent Variable R STRD,t 

Dependent Variable R put,t 

Dependent Variable R DHput,t 

Breaks - Inc. Inf. (Learning)  and  α  = 0.5
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Table C-4 
Volatility risk premium regressions with a coefficient of relative risk aversion equal to 5.0 
The table presents single-variable regressions of lagged the volatility risk premium on hold-to-maturity 
put option returns (Rput), put-delta-hedged portfolio returns (RDHput) and straddle portfolio returns 
(RSTRD) over 1-, 3-, 6-, 9- and 12-month forecasting horizons. The variables (    –    ),       ,         , 

        are defined in Table 1. The simulations are based on an economy with breaks and incomplete 

information under Bayesian learning. This table presents the results with a coefficient of relative risk 
aversion,  , at 5.0; however, additional regression analyses with different coefficients of risk aversion 
are reported in Appendix C. To adjust for heteroscedasticity and serial correlation, robust Newey-West 
(1987) t-statistics are used in the t-tests. The numbers in the table are the average estimates over 2,000 
simulations; for each of these simulations, we generate 12 years (3,024 days) of daily dividends. The 
percentage of the simulations with significant statistics for the respective diagnostic tests is reported in 
parentheses at 5% significance on one-sided t-tests. 

 
 
 
 

Monthly forecasting horizons 1 3 6 9 12

Constant -0.82 -0.88 -0.89 -0.90 -0.90

(96.17) (97.21) (98.26) (98.78) (98.61)
IV t  - RV t -0.41 -0.26 -0.23 -0.20 -0.18

(9.93) (9.93) (9.93) (11.32) (12.72)

Adj. R 2 (%) 0.96 0.46 0.33 0.26 0.12

Constant -0.02 -0.03 -0.05 -0.06 -0.07

(45.99) (83.80) (93.73) (95.30) (95.64)
IV t  - RV t -0.18 -0.14 -0.09 -0.06 -0.03

(100.00) (95.82) (68.29) (35.37) (17.60)

Adj. R 2 (%) 43.95 26.58 14.16 7.78 4.54

Constant -0.69 -0.72 -0.76 -0.79 -0.82

(90.77) (94.25) (96.34) (98.26) (98.78)
IV t  - RV t -0.69 -0.59 -0.48 -0.38 -0.30

(44.95) (41.29) (35.37) (28.22) (26.48)

Adj. R 2 (%) 3.82 2.89 2.00 1.38 0.95

Dependent Variable R STRD,t 

Breaks - Inc. Inf. (Learning)  and  α  = 5.0

Dependent Variable R put,t 

Dependent Variable R DHput,t 
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Table C-5 
Monthly return regression with a coefficient of relative risk aversion equal to 0.5 
The table reports single-variable and multivariable regressions of one-month lagged predictor variables on hold-to-maturity put option contract returns Rput 
(Panel A), put-delta-hedged portfolio returns RDHput (Panel B) and straddle portfolio returns RSTRD (Panel C). The simulations are based on an economy with 
breaks and incomplete information under Bayesian learning. This table presents the results with a coefficient of relative risk aversion,  , at 0.5; however, 
additional regression analyses with different coefficients of risk aversion are reported in Appendix C. The variables (    –    ),       ,         ,        ,    ,    , 

                      are defined in Table 1. The dividend yield,          , is implicitly obtained from the call-put parity relationship of the European put and 

call option contracts (at-the-money one-month to maturity contracts).      is the excess return on the stock (the stock price is calculated with Equation (8)). To 

adjust for heteroscedasticity and serial correlation, robust Newey-West (1987) t-statistics are used in the t-tests. The numbers in the table are the average 
estimates over 2,000 simulations; for each of these simulations, we generate 12 years (3,024 days) of daily dividends. The percentage of the simulations with 
significant statistics for the respective diagnostic tests is reported in parentheses at 5% significance on two-sided t-tests. 

 

Panel A.

Constant -0.26 0.79 -0.36 -0.33 -0.65 -0.20 -0.39 0.05 1.18 -0.13 0.11 -0.21

(22.62) (6.46) (10.88) (61.39) (32.31) (6.80) (94.90) (8.33) (7.48) (7.82) (8.33) (8.84)

IV t  - RV t -3.93 -3.90

(7.82) (7.65)

IV t -12.79 -13.03

(11.56) (11.90)

RV t -0.50 -0.54

(6.12) (5.78)

Slope Mon,t -1.04 -1.11

(8.50) (9.35)

Slope Mat,t 11.52 -2.23

(12.76) (6.63)

DivYield t -2.66 -4.39 -5.28 -3.30 -6.32 -4.37

(5.78) (7.48) (7.65) (7.65) (7.65) (8.16)

R m,t 0.49 0.68 0.69 0.57 1.09 0.31

(5.61) (5.95) (6.63) (6.63) (6.63) (5.95)

Adj. R 2 (%) 0.38 0.95 0.01 0.27 0.52 0.01 -0.02 0.40 0.98 0.03 0.34 0.34

Monthly return regression

Breaks - Inc. Inf. (Learning)  and  α  = 0.5

Dependent Variable R put,t 
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Panel B.

Constant -0.01 0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 0.01 -0.01 -0.01 -0.01

(43.03) (21.26) (26.02) (90.65) (10.54) (12.59) (100.00) (12.24) (8.33) (11.73) (11.90) (10.03)

IV t  - RV t -0.07 -0.07

(17.18) (16.67)

IV t -0.22 -0.22

(38.78) (37.59)

RV t -0.01 -0.01

(6.80) (8.16)

Slope Mon,t -0.02 -0.02

(17.86) (17.01)

Slope Mat,t -0.35 -0.37

(36.39) (63.78)

DivYield t 0.08 0.08 0.05 0.09 0.06 0.12

(9.86) (10.54) (9.86) (10.88) (9.86) (10.20)

R m,t 0.00 0.00 0.00 -0.01 0.00 -0.01

(6.80) (5.78) (6.12) (6.80) (6.46) (7.31)

Adj. R 2 (%) 1.26 2.57 0.09 1.20 2.42 0.06 0.08 1.31 2.58 0.23 1.26 5.50

Monthly return regression

Breaks - Inc. Inf. (Learning)  and  α  = 0.5

Dependent Variable R DHput,t 
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Panel C.

Constant -0.28 0.18 -0.32 -0.32 -0.06 -0.58 -0.35 -0.52 -0.01 -0.59 -0.54 -0.42

(53.91) (8.84) (27.38) (91.33) (13.10) (12.76) (100.00) (10.37) (7.65) (11.73) (11.56) (12.24)

IV t  - RV t -1.88 -1.84

(10.03) (9.69)

IV t -5.77 -5.72

(17.52) (16.50)

RV t -0.49 -0.44

(6.63) (6.12)

Slope Mon,t -0.40 -0.38

(11.22) (11.39)

Slope Mat,t -12.94 -6.93

(23.98) (25.17)

DivYield t 3.42 3.42 2.72 3.86 3.06 3.40

(8.50) (9.18) (8.50) (9.01) (8.84) (8.16)

R m,t -0.04 -0.12 -0.03 -0.17 -0.09 -0.14

(6.97) (7.14) (6.80) (7.48) (7.31) (7.14)

Adj. R 2 (%) 0.31 0.99 0.04 0.28 1.31 0.04 0.03 0.37 1.01 0.12 0.34 1.86

Monthly return regression

Breaks - Inc. Inf. (Learning)  and  α  = 0.5

Dependent Variable R STRD,t 
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Table C-6 
Monthly return regression with a coefficient of relative risk aversion equal to 5.0 
The table reports single-variable and multivariable regressions of one-month lagged predictor variables on hold-to-maturity put option contract returns Rput 
(Panel A), put-delta-hedged portfolio returns RDHput (Panel B) and straddle portfolio returns RSTRD (Panel C). The simulations are based on an economy with 
breaks and incomplete information under Bayesian learning. This table presents the results with a coefficient of relative risk aversion,  , at 0.5; however, 
additional regression analyses with different coefficients of risk aversion are reported in Appendix C. The variables (    –    ),       ,         ,        ,    ,    , 

                      are defined in Table 1. The dividend yield,          , is implicitly obtained from the call-put parity relationship of the European put and 

call option contracts (at-the-money one-month to maturity contracts).      is the excess return on the stock (the stock price is calculated with Equation (8)). To 

adjust for heteroscedasticity and serial correlation, robust Newey-West (1987) t-statistics are used in the t-tests. The numbers in the table are the average 
estimates over 2,000 simulations; for each of these simulations, we generate 12 years (3,024 days) of daily dividends. The percentage of the simulations with 
significant statistics for the respective diagnostic tests is reported in parentheses at 5% significance on two-sided t-tests. 

 

 

 

Panel A.

Constant -0.82 -0.76 -0.96 -0.94 -0.76 -0.32 -0.96 -0.16 -0.11 -0.31 -0.24 -0.20

(94.60) (86.76) (99.65) (99.65) (84.15) (35.37) (99.65) (26.13) (24.22) (35.19) (37.28) (8.71)

IV t  - RV t -0.41 -0.60

(14.29) (9.41)

IV t -0.54 -0.73

(15.16) (8.36)

RV t 0.01 -0.06

(6.27) (5.75)

Slope Mon,t 0.26 -0.15

(32.23) (23.87)

Slope Mat,t -1.22 -2.19

(13.59) (6.79)

DivYield t -3.04 -2.77 -2.69 -3.11 -3.45 -4.55

(17.94) (8.54) (8.54) (13.94) (3.83) (8.19)

R m,t 0.60 1.20 0.58 0.39 0.67 0.37

(13.41) (10.45) (14.81) (15.51) (6.27) (5.75)

Adj. R 2 (%) 0.96 1.22 -0.52 1.87 1.58 2.31 -0.16 3.12 3.27 1.75 2.70 0.35

Monthly return regression

Breaks - Inc. Inf. (Learning)  and  α  = 5.0

Dependent Variable R put,t 
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Panel B.

Constant -0.02 0.00 -0.08 -0.09 0.01 -0.13 -0.08 0.00 0.03 -0.13 -0.03 -0.01

(31.36) (21.78) (100.00) (100.00) (23.52) (71.43) (100.00) (6.27) (18.47) (69.34) (48.95) (9.93)

IV t  - RV t -0.18 -0.19

(99.65) (99.65)

IV t -0.23 -0.23

(100.00) (100.00)

RV t -0.12 -0.12

(93.21) (82.93)

Slope Mon,t -0.10 -0.13

(82.06) (89.72)

Slope Mat,t -0.52 -0.37

(99.30) (63.24)

DivYield t 0.24 -0.06 -0.09 0.24 -0.29 0.12

(59.06) (9.93) (18.29) (57.84) (56.10) (10.10)

R m,t -0.13 -0.05 0.03 -0.11 0.08 -0.01

(36.06) (31.71) (15.16) (23.00) (39.72) (7.32)

Adj. R 2 (%) 43.95 62.14 4.93 23.70 56.44 10.99 2.07 49.05 62.52 17.09 31.97 5.34

Monthly return regression

Breaks - Inc. Inf. (Learning)  and  α  = 5.0

Dependent Variable R DHput,t 
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Panel C.

Constant -0.69 -0.63 -0.92 -0.95 -0.64 -1.31 -0.93 -0.77 -0.72 -1.31 -1.18 -0.42

(86.41) (73.17) (100.00) (100.00) (76.66) (75.96) (100.00) (49.30) (44.60) (73.69) (58.89) (12.20)

IV t  - RV t -0.69 -0.73

(23.34) (19.34)

IV t -0.80 -0.82

(18.64) (17.94)

RV t -0.08 0.00

(16.55) (8.01)

Slope Mon,t -0.27 -0.19

(8.36) (3.31)

Slope Mat,t -1.70 -6.89

(19.16) (24.56)

DivYield t 1.73 0.45 0.45 1.73 1.07 3.34

(8.01) (1.39) (1.92) (6.27) (6.10) (8.19)

R m,t -0.48 -0.36 0.01 -0.61 -0.27 -0.14

(8.01) (4.53) (4.01) (4.01) (5.40) (7.14)

Adj. R 2 (%) 3.82 4.59 -0.60 1.07 3.64 1.37 -0.42 3.90 4.46 0.43 1.60 1.82

Dependent Variable R STRD,t 

Monthly return regression

Breaks - Inc. Inf. (Learning)  and  α  = 5.0
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Table C-7 
Three-month return regressions with a coefficient of relative risk aversion equal to 0.5 
The table reports single-variable and multivariable regressions of three-month lagged predictor variables on hold-to-maturity put option contract returns Rput 
(Panel A), put-delta-hedged portfolio returns RDHput (Panel B) and straddle portfolio returns RSTRD (Panel C). The simulations are based on an economy with 
breaks and incomplete information under Bayesian learning. This table presents the results with a coefficient of relative risk aversion,  , at 0.5; however, 
additional regression analyses with different coefficients of risk aversion are reported in Appendix C. The variables (    –    ),       ,         ,        ,    ,    , 

                      are defined in Table 1. The dividend yield,           and      are defined in Table 4. To adjust for heteroscedasticity and serial 

correlation, robust Newey-West (1987) t-statistics are used in the t-tests. The numbers in the table are the average estimates over 2,000 simulations; for each 
of these simulations, we generate 12 years (3,024 days) of daily dividends. The percentage of the simulations with significant statistics for the respective 
diagnostic tests is reported in parentheses at 5% significance on two-sided t-tests.  

 

 

Panel A.

Constant -0.36 -0.04 -0.34 -0.40 -0.38 -0.05 -0.39 0.05 0.42 0.05 0.00 -0.07

(32.65) (8.84) (10.71) (73.47) (19.22) (7.31) (93.71) (5.44) (4.76) (6.97) (6.80) (5.61)

IV t  - RV t -0.86 -0.89

(6.29) (5.44)

IV t -3.80 -4.04

(8.84) (8.16)

RV t -0.84 -0.83

(4.93) (4.59)

Slope Mon,t 0.13 0.09

(7.65) (6.97)

Slope Mat,t -0.45 -3.30

(8.84) (8.16)

DivYield t -4.84 -5.93 -6.22 -5.64 -5.64 -5.98

(5.61) (5.27) (5.27) (5.61) (5.78) (5.61)

R m,t 0.18 0.40 0.38 0.39 0.45 0.20

(5.27) (3.74) (5.10) (3.91) (3.91) (4.59)

Adj. R
2
 (%) -0.04 0.12 -0.08 -0.08 0.06 0.00 -0.02 -0.09 0.08 -0.12 -0.12 0.16

Three-month return regression

Breaks - Inc. Inf. (Learning)  and  α  = 0.5

Dependent Variable R put,t 
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Panel B.

Constant -0.01 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.01 0.00 0.00 0.00

(54.93) (14.29) (28.40) (94.90) (20.75) (9.18) (100.00) (7.48) (10.71) (9.52) (7.14) (9.69)

IV t  - RV t -0.05 -0.05

(13.27) (13.95)

IV t -0.14 -0.14

(26.36) (28.40)

RV t 0.00 0.00

(6.80) (7.14)

Slope Mon,t -0.01 -0.01

(11.90) (11.90)

Slope Mat,t -0.21 -0.25

(24.32) (44.39)

DivYield t -0.08 -0.09 -0.11 -0.08 -0.10 -0.07

(7.48) (9.01) (9.18) (8.67) (8.50) (9.35)

R m,t 0.00 0.00 0.01 0.00 0.00 0.00

(6.29) (5.61) (5.95) (5.44) (5.27) (5.61)

Adj. R
2
 (%) 0.46 1.09 0.01 0.40 0.97 0.11 -0.05 0.50 1.14 0.06 0.44 2.92

Dependent Variable R DHput,t 

Three-month return regression

Breaks - Inc. Inf. (Learning)  and  α  = 0.5
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Panel C.

Constant -0.29 0.03 -0.35 -0.33 -0.20 -0.24 -0.35 -0.16 0.22 -0.24 -0.18 -0.25

(53.91) (10.20) (30.10) (94.22) (23.47) (10.37) (100.00) (10.20) (8.33) (10.03) (8.84) (10.88)

IV t  - RV t -1.65 -1.64

(10.03) (10.03)

IV t -4.11 -4.13

(17.86) (17.18)

RV t -0.01 0.02

(7.31) (6.63)

Slope Mon,t -0.30 -0.32

(10.88) (9.69)

Slope Mat,t -6.82 -4.37

(17.35) (21.77)

DivYield t -1.59 -1.96 -2.65 -1.60 -2.16 -1.39

(8.33) (9.01) (8.50) (9.01) (9.18) (9.35)

R m,t -0.05 0.04 0.12 0.02 0.05 -0.02

(5.27) (5.78) (5.27) (5.95) (4.76) (5.27)

Adj. R
2
 (%) 0.25 0.58 0.03 0.19 0.59 0.09 -0.07 0.26 0.60 0.04 0.18 1.06

Breaks - Inc. Inf. (Learning)  and  α  = 0.5

Dependent Variable R STRD,t 

Three-month return regression
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Table C-8 
Three-month return regressions with a coefficient of relative risk aversion equal to 5.0 
The table reports single-variable and multivariable regressions of three-month lagged predictor variables on hold-to-maturity put option contract returns Rput 
(Panel A), put-delta-hedged portfolio returns RDHput (Panel B) and straddle portfolio returns RSTRD (Panel C). The simulations are based on an economy with 
breaks and incomplete information under Bayesian learning. This table presents the results with a coefficient of relative risk aversion,  , at 5.0; however, 
additional regression analyses with different coefficients of risk aversion are reported in Appendix C. The variables (    –    ),       ,         ,        ,    ,    , 

                      are defined in Table 1. The dividend yield,           and      are defined in Table 4. To adjust for heteroscedasticity and serial 

correlation, robust Newey-West (1987) t-statistics are used in the t-tests. The numbers in the table are the average estimates over 2,000 simulations; for each 
of these simulations, we generate 12 years (3,024 days) of daily dividends. The percentage of the simulations with significant statistics for the respective 
diagnostic tests is reported in parentheses at 5% significance on two-sided t-tests.  

 

 

 

Panel A.

Constant -0.88 -0.84 -0.96 -0.94 -0.82 -0.41 -0.96 -0.27 -0.21 -0.41 -0.53 -0.07

(96.17) (89.55) (99.65) (99.65) (89.20) (43.38) (99.65) (32.58) (30.66) (43.03) (43.73) (5.75)

IV t  - RV t -0.26 -0.35

(8.54) (6.27)

IV t -0.34 -0.39

(11.67) (7.49)

RV t 0.01 0.10

(5.57) (3.83)

Slope Mon,t 0.40 0.17

(25.44) (15.85)

Slope Mat,t -0.89 -3.28

(12.02) (8.01)

DivYield t -2.63 -2.70 -2.85 -2.62 -2.02 -5.89

(15.33) (11.85) (12.54) (15.16) (7.32) (5.75)

R m,t 0.76 1.12 0.88 1.18 0.60 0.17

(9.41) (8.89) (9.76) (11.32) (7.32) (4.53)

Adj. R
2
 (%) 0.46 0.67 -0.42 1.13 0.98 1.76 -0.08 2.01 2.10 1.33 1.65 0.15

Three-month return regression

Breaks - Inc. Inf. (Learning)  and  α  = 5.0

Dependent Variable R put,t 
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Panel B.

Constant -0.03 -0.02 -0.08 -0.09 -0.01 -0.12 -0.08 -0.02 0.00 -0.12 -0.04 0.00

(70.56) (42.86) (100.00) (100.00) (29.44) (67.60) (100.00) (10.80) (10.63) (67.77) (41.29) (9.58)

IV t  - RV t -0.14 -0.14

(89.90) (91.99)

IV t -0.17 -0.17

(99.13) (98.61)

RV t -0.10 -0.10

(89.55) (79.97)

Slope Mon,t -0.08 -0.10

(77.35) (83.97)

Slope Mat,t -0.41 -0.25

(98.43) (44.43)

DivYield t 0.19 -0.05 -0.09 0.19 -0.24 -0.07

(53.31) (13.07) (16.20) (55.92) (48.78) (9.41)

R m,t -0.09 -0.02 0.04 -0.05 0.08 0.00

(35.89) (34.67) (14.98) (18.99) (38.15) (5.75)

Adj. R
2
 (%) 26.58 37.39 3.01 17.08 35.01 8.97 1.34 30.14 37.59 12.59 22.52 2.87

Dependent Variable R DHput,t 

Three-month return regression

Breaks - Inc. Inf. (Learning)  and  α  = 5.0
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Panel C.

Constant -0.72 -0.67 -0.92 -0.95 -0.66 -1.24 -0.92 -0.74 -0.68 -1.24 -1.10 -0.24

(90.77) (82.75) (100.00) (100.00) (81.36) (76.83) (100.00) (54.01) (50.35) (75.96) (59.06) (10.80)

IV t  - RV t -0.59 -0.61

(18.47) (20.56)

IV t -0.69 -0.69

(23.87) (28.05)

RV t -0.09 0.01

(17.07) (7.32)

Slope Mon,t -0.23 -0.17

(8.19) (3.31)

Slope Mat,t -1.54 -4.35

(25.61) (21.43)

DivYield t 1.42 0.11 0.05 1.43 0.70 -1.46

(10.28) (2.79) (4.18) (8.54) (6.79) (9.41)

R m,t -0.39 -0.28 0.11 -0.41 -0.14 0.00

(4.88) (6.45) (2.61) (2.79) (5.57) (5.40)

Adj. R
2
 (%) 2.89 3.52 -0.60 0.74 3.04 1.09 -0.41 2.80 3.21 0.18 0.97 1.05

Breaks - Inc. Inf. (Learning)  and  α  = 5.0

Dependent Variable R STRD,t 

Three-month return regression
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Figure 1. Evolutions of the mean dividend growth rate and the at-the-money short-term implied 
volatility when there is learning. The figure shows the outcome for one simulated path concerning 
the dynamics over a 12-year sample for the mean dividend growth rate (left hand side) and the at-the-
money short-term implied volatility (right hand side) when there is incomplete information and 
rational learning. In this simulation, we set the coefficient of relative risk aversion at 0.2. In the case of 
learning the mean dividend growth rate is calculated using equation (6). IVt is expressed on an annual 
basis and calculated as the average of the Black-Scholes’ (1973) implied volatilities of a European put 
option contract and a European call option contract, where both contracts are at-the-money and with 
one-month to maturity. 
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Figure 2. Estimated regression coefficients of the volatility risk premium, percentage of the 
simulations having significant statistics and adjusted R2s. The figure shows the average estimated 
regression coefficients, the percentage of the simulations which have significant statistics for the slope 
coefficients and average adjusted R2s. The figure presents single-variable regressions of the lagged (   
–   ) on hold-to-maturity put option returns (Rput), put-delta-hedged portfolio returns (RDHput) and 
straddle portfolio returns (RSTRD) over 1-, 3-, 6-, 9- and 12-month forecasting horizons. The variables 
(   –   ), Rput, RDHput and RSTRD are defined in Table 1. The simulations are based on an economy with 
breaks and incomplete information under Bayesian learning. This figure presents the results with a 
coefficient of relative risk aversion,  , at 0.2. To adjust for heteroscedasticity and serial correlation, 
robust Newey-West (1987) t-statistics are used in the t-tests. The numbers in the figure are the average 
estimates over 2,000 simulations; for each of these simulations, we generate 12 years (3,024 days) of 
daily dividends. The percentage of the simulations with significant statistics for the respective 
diagnostic tests is reported in parentheses at 5% significance on one-sided t-tests. 
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Figure B-1. Structural breaks in the drift of the random walk process. The solid line represents the 
dividend drift calculated with a rolling window of 125 trading days using log dividend-ratio from the 
S&P 500 index, which are deseasonalized and adjusted by the consumer price index to obtain real 
dividends between 1996 and 2007. The dotted line shows structural breaks in the dividend drift. 
Breaks are detected in December 1996, August 1999, September 2000, April 2001, October 2001, 
August 2002, November 2003, and October 2004. 
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